PRINTED CIRCUIT BOARD FOR RF/MICROWAVE APPLICATIONS | Forum

Topic location: Forum home » General » General Chat
wisepowder
wisepowder Jan 9

Many applications today send signals between two devices to provide data or to perform a specific function. These signals may consist of radio frequencies (RF) or microwave frequencies. Typically found in the communication industry, RF/microwaves are common for satellites, radar, and navigational systems. Yet, they can also be found in smaller applications, such as garage door openers, security key card terminals, wireless alarm systems, and handheld warehouse inventory scanners.To get more news about BT PCB, you can visit pcbmake official website.

Inside all these applications are printed circuit boards (PCBs) that allow for the signal to be transmitted and received. Traditionally, there are 4 layers to the PCB (silkscreen, solder mask, copper, and substrate). To hold all these layers together, the PCB is laminated with certain materials that are cured using heat and pressure.
Selecting the right materials for the laminate is based on numerous factors. The laminate must be strong while light without adding unnecessary weight to the application. It also must provide good thermal conductivity and thermal expansion, where the material can handle the generated heat from the electricity passing through the PCB, while allowing for an expansion of the materials from the rise in temperatures without breaking and developing cracks or interfering with the RF and microwave signals. The laminate should also have good moisture and chemical resistance, a high bond strength, and superior mechanical and electrical properties.

Over the years, the increasing high-tech demands of applications have required laminates that could keep up with the newer technology. Manufacturing trends in PCB laminates have offered companies with increased choices while also showing them a glimpse of what lies in the future with this composition material for PCBs.
When talking about PCB laminates, FR4 was the standard commonly used for all types of circuit boards for generations. It was low-cost, reliable, and had all the positive characteristics that were desired. In addition, it was easy to use during circuit fabrication.

FR4 is a woven fiberglass reinforced fire-retardant epoxy laminate. However, as devices began to offer higher frequencies of over 500 MHz, the FR4 laminate began to experience degraded electrical performance. A higher performance FR4 was soon introduced for multilayer PCBs – FR4 glass transition temperature (FR4 Tg).

Password protected photo
Password protected photo
Password protected photo